Presynaptic Proteoglycans: Sweet Organizers of Synapse Development
نویسندگان
چکیده
منابع مشابه
Presynaptic Proteoglycans: Sweet Organizers of Synapse Development
Synaptic adhesion molecules control neuronal synapse development. In this issue of Neuron, Siddiqui et al. (2013) and de Wit et al. (2013) demonstrate that LRRTM4, a postsynaptic adhesion molecule, trans-synaptically interacts with presynaptic heparan sulfate proteoglycans (HSPGs) to promote synapse development.
متن کاملProteoglycans as organizers of the intercellular matrix.
Introduction The evolution of multicellular organisms made necessary the development of an extracellular matrix to protect cells and to bind them together in a spatial arrangement required for specialized anatomical and physiological functions. Thus the extent of the matrix and how it is organized in different parts of the body depend on the specialized functions of cells. The matrix in its tur...
متن کاملHeparan sulphate proteoglycans: the sweet side of development.
Pattern formation during development is controlled to a great extent by a small number of conserved signal transduction pathways that are activated by extracellular ligands such as Hedgehog, Wingless or Decapentaplegic. Genetic experiments have identified heparan sulphate proteoglycans (HSPGs) as important regulators of the tissue distribution of these extracellular signalling molecules. Severa...
متن کاملPresynaptic modulation of the retinogeniculate synapse.
Modulatory projections from brainstem nuclei and intrinsic thalamic interneurons play a significant role in modifying sensory information as it is relayed from the thalamus to the cortex. In the lateral geniculate nucleus (LGN), neurotransmitters released from these modulatory inputs can affect the intrinsic conductances of thalamocortical relay neurons, thus altering their firing properties. H...
متن کاملPresynaptic Spectrin Is Essential for Synapse Stabilization
BACKGROUND Precise neural circuitry is established and maintained through a regulated balance of synapse stabilization and disassembly. Currently, little is known about the molecular mechanisms that specify synapse stability versus disassembly. RESULTS Here, we demonstrate that presynaptic spectrin is an essential scaffold that is required to maintain synapse stability at the Drosophila neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2013
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2013.07.048